If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63z-49-18z^2=0
a = -18; b = 63; c = -49;
Δ = b2-4ac
Δ = 632-4·(-18)·(-49)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-21}{2*-18}=\frac{-84}{-36} =2+1/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+21}{2*-18}=\frac{-42}{-36} =1+1/6 $
| 12n-8=10n-3 | | 3x-5=12+4x÷=2 | | x=2.3=3.07 | | -8(3y+5)-5=0 | | 14-(3x+9)=104 | | -2(x+1=x-8 | | 0.5(12a-8)=26 | | 4(2x+5)=-26+6 | | x-4/2x+1=x+5/x | | .5(12a-8)=12 | | 5(2x-8)15=-15 | | −5(x+2)=48−(x+2) | | 2(6x+4)+7x=0 | | 4(3d-1=12d | | 49=-7(6+b) | | -1=5+2x/7 | | 4.8q-4.4-5.9q=-0.1q-4.4 | | 0.8=7/a | | 4k-3-2k=2k+5 | | −6=-2+s | | 5z^2+3z+8z^2=0 | | x=313x-7=22 | | 7-1/8n=-2/7 | | 5+4=-3(5x-3) | | 5x+3(x+3)=6x+1 | | 3x4=-16 | | -9(x-8)+5=77 | | 6c−8−2c=−1 | | -16+13=-3(x+8) | | -35+6x=7.5 | | –1.3p+12.7p−18.22=18.26+13.8p | | -6g+16=-g-9 |